Defining a mechanistic link between pigment epithelium–derived factor, docosahexaenoic acid, and corneal nerve regeneration

نویسندگان

  • Thang Luong Pham
  • Jiucheng He
  • Azucena H. Kakazu
  • Bokkyoo Jun
  • Nicolas G. Bazan
  • Haydee E. P. Bazan
چکیده

The cornea is densely innervated to sustain the integrity of the ocular surface. Corneal nerve damage produced by aging, diabetes, refractive surgeries, and viral or bacterial infections impairs tear production, the blinking reflex, and epithelial wound healing, resulting in loss of transparency and vision. A combination of the known neuroprotective molecule, pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA), has been shown to stimulate corneal nerve regeneration, but the mechanisms involved are unclear. Here, we sought to define the molecular events of this effect in an in vivo mouse injury model. We first confirmed that PEDF + DHA increased nerve regeneration in the mouse cornea. Treatment with PEDF activates the phospholipase A2 activity of the PEDF-receptor (PEDF-R) leading to the release of DHA; this free DHA led to enhanced docosanoid synthesis and induction of bdnf, ngf, and the axon growth promoter semaphorin 7a (sema7a), and as a consequence, their products appeared in the mouse tears. Surprisingly, corneal injury and treatment with PEDF + DHA induced transcription of neuropeptide y (npy), small proline-rich protein 1a (sprr1a), and vasoactive intestinal peptide (vip) in the trigeminal ganglia (TG). The PEDF-R inhibitor, atglistatin, blocked all of these changes in the cornea and TG. In conclusion, we uncovered here an active cornea-TG axis, driven by PEDF-R activation, that fosters axon outgrowth in the cornea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of pigment epithelium-derived factor, docosahexaenoic acid and neuroprotectin D1 in corneal inflammation and nerve integrity after refractive surgery.

Alterations in corneal innervations result in impaired corneal sensation, severe dry eye and damage to the epithelium that may in turn lead to corneal ulcers, melting and perforation. These alterations can occur after refractive surgery. We have discovered that pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA or the docosanoid bioactive neuroprotectin D1 (NPD1)) induces n...

متن کامل

Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study

Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...

متن کامل

Corneal Epithelium-Derived Neurotrophic Factors Promote Nerve Regeneration.

Purpose To explore the neurotrophic factor expression in corneal epithelium and evaluate their effects on the trigeminal ganglion (TG) neurite outgrowth and corneal nerve regeneration in mice. Methods The expression of neurotrophic factors was compared among the intact, regenerating, and regenerated mouse corneal epithelium. Mouse primary TG neurons were treated with the conditioned medium of...

متن کامل

Neuroprotectin D1 synthesis and corneal nerve regeneration after experimental surgery and treatment with PEDF plus DHA.

PURPOSE This study was conducted to define whether pigment epithelial-derived growth factor (PEDF), together with docosahexaenoic acid (DHA), enhances the synthesis of neuroprotectin D1 (NPD1) and the regeneration of corneal nerves damaged after surgery. METHODS Corneal stromal dissection was performed in the left eyes of adult New Zealand rabbits treated with DHA+PEDF, PEDF, or DHA for 6 wee...

متن کامل

VEGF-B promotes recovery of corneal innervations and trophic functions in diabetic mice

Vascular endothelial growth factor (VEGF)-B possesses the capacity of promoting injured peripheral nerve regeneration and restore their sensory and trophic functions. However, the contribution and mechanism of VEGF-B in diabetic peripheral neuropathy remains unclear. In the present study, we investigated the expression and role of VEGF-B in diabetic corneal neuropathy by using type 1 diabetic m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 292  شماره 

صفحات  -

تاریخ انتشار 2017